AMSER Case of the Month July 2023

HPI: 24 year old female at 16w3d gestation with no fetal cardiac activity

Megha Varghese, OMS-3 *Lake Erie College of Osteopathic Medicine*

Sonja Opper, DO, PGY-3 *Allegheny Health Network*

Dr. Matthew Hartman, MD Allegheny Health Network

Patient Presentation

- HPI: 24 year old, G4P1021 female at 16w3d gestation presenting to Ob/Gyn for routine prenatal care. Previous prenatal visits and noninvasive prenatal testing have been unremarkable. Patient has no complaints
- Maternal Medical History: 1 living child, 2 prior abortions
- Family History: Noncontributory
- Social History: Noncontributory

Pertinent Physical Exam and Labs

- Physical Exam:
 - VScan showed no fetal cardiac activity
- hCG: 11,665 mlU/ml

What Imaging Should We Order?

Select the applicable ACR Appropriateness Criteria

Variant 1:	Suspected or initial diagnosis of gestational trophoblastic disease (GTD).
------------	--

Procedure	Appropriateness Category	Relative Radiation Level
US pelvis transvaginal	Usually Appropriate	0
US duplex Doppler pelvis	Usually Appropriate	0
US pelvis transabdominal	Usually Appropriate	0
Radiography chest	May Be Appropriate	�
CT abdomen and pelvis with IV contrast	Usually Not Appropriate	***
CT abdomen and pelvis without and with IV contrast	Usually Not Appropriate	***
CT abdomen and pelvis without IV contrast	Usually Not Appropriate	∞ ∞∞
CT chest with IV contrast	Usually Not Appropriate	888
CT chest without and with IV contrast	Usually Not Appropriate	888
CT chest without IV contrast	Usually Not Appropriate	***
CT head with IV contrast	Usually Not Appropriate	***
CT head without and with IV contrast	Usually Not Appropriate	***
CT head without IV contrast	Usually Not Appropriate	***
FDG-PET/CT skull base to mid-thigh	Usually Not Appropriate	***
MRI head without and with IV contrast	Usually Not Appropriate	0
MRI head without IV contrast	Usually Not Appropriate	0
MRI pelvis without and with IV contrast	Usually Not Appropriate	0
MRI pelvis without IV contrast	Usually Not Appropriate	0

This imaging modality was ordered by the Ob/Gyn team

Findings (unlabeled)

Findings (unlabeled)

Findings (labeled)

* — Dystrophic tissueX — Gestational SacArrow — Fetal pole

Fetal pole with crown-rump length measuring 4.01 cm consistent with 11 weeks gestation and lack of cardiac activity diagnostic of fetal demise

Findings (labeled)

X - gestational sac Circle - cystic changes Cystic changes around the gestational sac may relate to hydropic degeneration in setting of fetal demise vs gestational trophoblastic disease

Final Dx:

Partial Molar Pregnancy

Hydatidiform Mole

Epidemiology

- 60-120/100,000 pregnancies form hydatidiform moles; although varies widely by region
- Risk Factors: prior molar pregnancy, maternal age ≤15 or >35, hx infertility or spontaneous abortion

Etiology

- Type of gestational trophoblastic disease due to over-proliferative chorionic villi
- Two forms:
 - Partial Haploid ovum fertilized by two sperm
 - 69, XXX; XXY; XYY
 - Complete Enucleated egg fertilized by two sperm or haploid sperm duplicates
 - 46, XX; XY
- Histopathology: Hydropic chorionic villi with peripheral proliferation of trophoblasts; partial moles may contain fetal tissue

Hydatidiform Mole

Clinical Presentation

- Patients may present with vaginal bleeding, hyperemesis, hyperthyroidism, vaginal passage of "grape-like" tissue clusters
- Partial mole may present as threatened or spontaneous abortion

Diagnosis

- US Pelvis Transvaginal
 - Complete Mole: heterogenous mass with multiple anechoic spaces in uterine cavity "snow storm" appearance
 - Partial Mole: possible fetus, enlarged cystic spaces "Swiss cheese pattern", increased echogenicity of chorionic villi
- hCG may be elevated >100,000 in complete molar pregnancy
- Diagnosis confirmed by histopathology and karyotyping of uterine specimen

Hydatidiform Mole

Treatment

- Dilation and Curettage is often necessary to remove molar pregnancy
- hCG levels should be monitored following surgical intervention
 - If hCG levels remain high, follow up is required to evaluate persistent or invasive disease and possible chemotherapy
 - Risk of invasive disease is 15-20% in complete molar pregnancy, and 1-5% in partial molar pregnancy

Patient Outcome

- Patient underwent D&C to remove fetal and dystrophic tissue
- Pathology of uterine specimen revealed immature chorionic villi with morphologic features compatible with partial hydatidiform mole. Chromosome analysis revealed karyotype of 69, XXY
- hCG levels were monitored weekly to ensure decreasing values

References:

- Berkowitz, R. S., Horowitz, N. S., & Elias, K. M. (2022, June). Hydatidiform mole: Epidemiology, clinical features, and diagnosis. uptodate.com. Retrieved March 24, 2023, from <a href="https://www-uptodate-com.lecoml.com.edu/contents/hydatidiform-mole-epidemiology-clinical-features-and-diagnosis?search=partial%20molar%20pregnancy&source=search_result&selectedTitle=2~150&usage_type=default&display_rank=2
- Ghassemzadeh S, Farci F, Kang M. Hydatidiform Mole. [Updated 2022 May 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459155/
- Gestational trophoblastic disease ACR. acr.org. (n.d.). Retrieved March 24, 2023, from https://acsearch.acr.org/docs/3102395/Narrative/
- Kaur B. (2021). Pathology of gestational trophoblastic disease (GTD). Best practice & research. Clinical obstetrics & gynaecology, 74, 3–28. https://doi.org/10.1016/j.bpobgyn.2021.02.005
- Lurain J. R. (2010). Gestational trophoblastic disease I: epidemiology, pathology, clinical presentation and diagnosis of gestational trophoblastic disease, and management of hydatidiform mole. American journal of obstetrics and gynecology, 203(6), 531–539. https://doi.org/10.1016/j.ajog.2010.06.073

